
EPJ E
Soft Matter and 
Biological Physics

your physics journal

EPJ .org

Eur. Phys. J. E (2013) 36: 23 DOI 10.1140/epje/i2013-13023-2

Mechano-transduction in tumour growth
modelling

P. Ciarletta, D. Ambrosi, G.A. Maugin and L. Preziosi



DOI 10.1140/epje/i2013-13023-2

Regular Article

Eur. Phys. J. E (2013) 36: 23 THE EUROPEAN

PHYSICAL JOURNAL E

Mechano-transduction in tumour growth modelling⋆

P. Ciarletta1,4,a, D. Ambrosi2, G.A. Maugin1, and L. Preziosi3

1 Institut Jean le Rond d’Alembert, UMR CNRS 7190, Universitè Pierre et Marie Curie - Paris 6, 4 place Jussieu, Case 162,
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Abstract. The evolution of biological systems is strongly influenced by physical factors, such as applied
forces, geometry or the stiffness of the micro-environment. Mechanical changes are particularly important
in solid tumour development, as altered stromal-epithelial interactions can provoke a persistent increase
in cytoskeletal tension, driving the gene expression of a malignant phenotype. In this work, we propose a
novel multi-scale treatment of mechano-transduction in cancer growth. The avascular tumour is modelled
as an expanding elastic spheroid, whilst growth may occur both as a volume increase and as a mass
production within a cell rim. Considering the physical constraints of an outer healthy tissue, we derive
the thermo-dynamical requirements for coupling growth rate, solid stress and diffusing biomolecules inside
a heterogeneous tumour. The theoretical predictions successfully reproduce the stress-dependent growth
curves observed by in vitro experiments on multicellular spheroids.

1 Introduction

Recent advances in biosciences have highlighted that the
evolution of biological systems is strongly influenced by
physical factors, such as applied forces, geometry or the
mechanical properties of the micro-environment [1]. Con-
sequently, the study of mechano-transduction, that is the
ensemble of processes converting mechanical forces into
biochemically relevant factors, has become a multi-disci-
plinary subject attracting a growing research interest. Liv-
ing materials typically encounter nano-scale to macro-
scopic forces which may change their nature from physio-
logical to pathological conditions. Cells sense nano-scale
forces by integrins and focal adhesion proteins, whose
stimulus is converted into chemical activity by produc-
ing a transduction current that changes the membrane
potential. In turn, actomyosin contractility gets activated
for maintaining tensional homeostasis inside the tissue
(i.e. the local balance between exogenous and endoge-
nous forces), a process termed mechano-reciprocity [2].
This mechanism is fundamental during embryonic devel-
opment, when the mechanical stiffness of the local envi-
ronment is sensed by the developing cells, and transformed
into contractile forces regulating the morphogenetic move-

⋆ Contribution to the Topical Issue “Physical constraints of
morphogenesis and evolution”, edited by Vincent Fleury, Paul
François and Marie Christine Ho Ba Tho.

a e-mail: pasquale.ciarletta@upmc.fr

ments and cell differentiation [3]. Nevertheless, mechano-
transduction is not limited to such switch-like events, but
allows cells to respond to time-varying mechanical stim-
uli through dynamic molecular processes [4]. Therefore,
cells undergo dynamic adaptation driven both by epige-
netic remodelling and gene regulatory processes. In par-
ticular, gene expression may be triggered by long-term
changes in micro-environment or cellular behaviour, caus-
ing a loss of tissue homeostasis which is often a hall-
mark of disease. Mechanical changes are particularly im-
portant for solid tumour development, as altered stromal-
epithelial interactions often precede malignancy. In par-
ticular, the healthy extra-cellular matrix is changed by
remodelling enzymes into a stiffer desmoplastic stroma,
resulting in higher force distributions that perturb physi-
ological homeostasis for long time scales. Such a persistent
increase in tissue rigidity provokes an elevated cytoskele-
tal tension, driving expression of a malignant phenotype
through a force-dependent regulation of integrins [5]. In
vitro experiments on tumours cells have confirmed that
the application of a compressive strain can regulate the
expression of genes involved in matrix degradation, cellu-
lar adhesion and proliferation [6]. Although the molecular
mechanisms of these mechano-transduction pathways have
not been fully deciphered, it is known that several signal-
ing cascades (e.g. Rho GTPase, FAK, ERK) transmit the
altered integrin-mediated tensional signals to pathways
controlling cell cycle, thus favouring uncontrolled tumour
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proliferation [7]. Moreover, an autocrine ligand-receptor
circuit into the extra-cellular space has been found to sense
mechanical stress even without any metabolic alteration
in the cell [8]. These research advances in cancer biology
have pushed the biomedical community toward the design
of micro-engineered experimental techniques for quantify-
ing the mechanical effects on biological systems in patho-
logical contexts [9].

From a clinical viewpoint, the avascular phase of tu-
mour development has been investigated using in vivo

isolation of spherical tumours, such as the nodal car-
cinoma [10]. Since the seminal work of Sutherland and
coworkers [11], in vitro experiments on tumour cells em-
bedded inside an inert matrix of agarose gels, also known
as multicellular tumour spheroids, have proved to be ef-
fective system models to reproduce the growth character-
istics in a tumour-like environment. Classical mathemati-
cal approaches have been proposed for modelling the ex-
perimental results, mostly focusing on the role played by
the nutrient consumption and inhibitor accumulation [12].
When Helmlinger and coworkers reported that a mechan-
ical stress can inhibit spheroid growth regardless of host
species, tissue of origin, or differentiation state [13], the
role of the tensional state in tumour growth has received
a great attention in mathematical modelling. The me-
chanical feedback acting during growth has been inves-
tigated using continuous frameworks, such as multiphase
mixtures [14–16], or single-cell models [17, 18]. Although
successful in reproducing the biophysical characteristics of
tumours at small scales, these approaches fail in modelling
a solid-like behaviour of the tumour mass. At scales larger
than the cell size, continuum mechanics is more appropri-
ate for modelling the solid stress in tumour cells, whose
elastic modulus has been measured at about 6 kPa [19],
at the light of thermodynamic restrictions. Even if sev-
eral continuous models have been proposed [20–22], a ma-
jor drawback may be nested in the arbitrary definition of
phenomenological growth-stress relationships.

In this work, we aim at overcoming existing limita-
tions defining a novel multi-scale treatment of mechano-
transduction during avascular tumour growth. In sect. 2
we introduce the balance principles for continuous bod-
ies with varying mass, deriving the thermo-dynamical re-
quirements for coupling growth, solid stress and the dif-
fusion of biomolecules. The theory is employed to model
the early avascular development of tumour spheroids. In
sect. 3, we extend the theoretical framework for modelling
the late development of a heterogeneous tumour, when
proliferation is concentrated on an outer surface around
an expending core of necrotic cells. Finally, the results are
discussed in sect. 4, comparing the theoretical predictions
with the stress-dependent growth curves observed in vitro
for multicellular spheroids.

2 Stress-dependent evolution laws for

volumetric growth

In this section we define a continuous theoretical frame-
work to describe the mechano-transduction laws for a soft

living material undergoing volume and mass changes. Bal-
ance principle for growing materials are introduced, and
stress-dependent evolution laws are derived from thermo-
dynamical arguments. The theory is finally employed to
model the early growth laws of solid tumour spheroids
under elastic constraints.

2.1 Balance principles

Let us consider a mapping x = χ(X, t) describing the de-
formation of single-phase continuous body from its refer-
ence position X to its actual configuration in x. The volu-
metric growth inside the material can be modeled using a
multiplicative decomposition of the deformation gradient
F [23], so that

F = ∂Xx = FeFg, (1)

where Fg represents the local deformation gradient im-
posed by the volumetric growth of the reference configura-
tion, and Fe is the elastic counterpart, which ensures com-
patibility of the overall deformation. Setting J = detF as
the determinant of the Jacobian of the deformation, the
time rate of volumetric changes is described by

J̇ = J ∇ · v, (2)

where v = ∂tx is the physical velocity field.
Let ρ0, ρ be the density of the body with respect to

the reference and actual configurations, respectively, being
ρ0 = Jρ. The biological material undergoes a volumetric
variation (source or absorption) of mass γ, so that the
mass balance reads

∂tρ + ∇ · (ρv) = γρ. (3)

Using eq. (3) in the absence of volumetric forces acting on
the material, the balance of linear momentum takes the
following form [24]:

ρv̇ = ∇ · σ, (4)

where the dot indicates the material time-derivative and
σ is the Cauchy stress tensor, that must be symmetric for
fulfilling the balance of the angular momentum.

Finally, indicating with e the internal energy of the
material per unit mass, the balance of the mechanical en-
ergy using eqs. (3)-(4) reads

ρė = σijuij −∇ · Q + r, (5)

where uij = (∂jvi + ∂ivj)/2, Q is the heat flux, r is the
external volumetric heat supply, and Einstein’s summa-
tion rule on repeated indices applies. The local balances
derived in this section will be complemented in the fol-
lowing by thermodynamical arguments that restrict the
admissibility of growth evolution laws.

2.2 Entropy inequality and dissipative growth laws

Let η be the entropy per unit mass of the growing ma-
terial, the Clausius-Duhem form of the second law of the
thermodynamics has the following local expression:

ρη̇ ≥ −∇ ·

(

Q

Θ
+ Q̄

)

+
r

Θ
, (6)
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where Θ is the absolute temperature, and Q̄ represents
an extra-entropy flux, which can possibly account for bio-
chemical dissipation inside the body.

The Helmholtz free energy per unit mass of the ma-
terial is defined as Ψ = e − Θη, so putting together
eqs. (5), (6) and substituting eq. (3), the local form of
the dissipation inequality reads

ρ(Ψ̇ + ηθ̇) ≤ σijuij − Θ∇ · Q̄ −
Q

Θ
· ∇Θ. (7)

Recalling the multiplicative decomposition of the deforma-
tion gradient in eq. (1), the free energy per mass unit for a
growing continuum must depend only on the purely elastic
deformation. Therefore, the following material functional
dependence for Ψ can be postulated [25]:

Ψ = Ψ(Fe, cα,∇cα, Θ), (8)

where cα are scalar internal variables, that might repre-
sent the local concentrations of biomolecules or biological
signals diffusing inside the material. The dependence of
Ψ on ∇cα is intended to describe the shape regulations
in morphogenetic processes based on the ability of cells
to measure gradients comparing their own signalling level
with those of their neighbours [26].

Substituting eq. (8) in eq. (7), the following constitu-
tive equation for the elastic stress can be derived:

σ = ρFe
∂Ψ

∂Fe
. (9)

The use of a hyperelastic constitutive law for the tumour
is known to be a simplification of a more complex rheol-
ogy, however no viscoplastic contribution is to be expected
here because null shear stress follows from the assumption
of spherical symmetry [27,28]. Accordingly, the dissipation
inequality in isothermal conditions takes the following re-
duced expression:

Mij

(

ḞgF
−1
g

)

ji
− ρ

∂Ψ

∂cα
ċα − ρ

∂Ψ

∂(∇cα)
· ∇ċα + Θ∇ · Q̄ ≥ 0,

(10)
where M = F−1

e σFe = ρ(∂Ψ/∂Fe)Fe is the so-called
Mandel stress, which is the stress measure driving the
evolution of material growth. The dissipation inequality
in eq. (10) gives the thermodynamical direction for the
transformation of biochemical energies into the volumet-
ric growth of a living material. Our objective is to propose
stress-dependent evolution equations of the growth tensor
in the form

Ḟg = f(Fg,M, cα,∇cα, Q̄, Θ), (11)

where f is a generic function of the given variables such
that eq. (10) is automatically satisfied. An application is
presented in the following model of the initial phase of
avascular tumour growth.

2.3 Application to stress-dependent avascular growth
in tumour spheroids

The early stages of tumour development are regulated
by the diffusion properties of nutrient factors and waste

Fig. 1. Scheme of the avascular growth of a tumour spheroid.
The tumour mass core is constrained by a surrounding healthy
tissue, whose inner and outer radii are indicated as ri(t) and
ro(t), respectively.

products through the surrounding host tissue, a process
which is called avascular growth. In practice, the solid tu-
mour is made by a small agglomeration of few cells which
rapidly proliferate thanks to the large availability of nu-
trients in the environment while deforming the external
healthy stroma. In this paragraph we aim at studying
the mechano-transduction characteristics in the avascu-
lar growth phase of tumour spheroids applying the pro-
posed theoretical framework. Let us consider the volumet-
ric growth of a tumour spheroid occupying the core nu-
cleus of a healthy surrounding tissue, as depicted in fig. 1.
The thermo-mechanical fields related to the tumour mass
and the host tissue are indicated in the following by using
the superscripts t and h, respectively, using a spherical
coordinate system (r, θ, φ). We assume that the tumour
spheroid undergoes a homogeneous volumetric growth at
uniform temperature Θ, such that

(F t
g)ij = g(M t

ij , t)δij , (12)

where δij is the Kronecker delta, and g = g(M t
ij , t) rep-

resents the time- and stress-dependent avascular growth
rate. Recalling that both the tumour cells and the healthy
stroma are incompressible media with a density close to
that of water, we must impose the incompressibility of the
elastic deformations, being detFk

e = 1, with k = (h, t).
Therefore, additively separating the biochemical and the
elastic contribution in eq. (8), a neo-Hookean mechanical
behaviour can be postulated so that the free energies of
the materials read

Ψk =
μk

2

[

(F k
e )ij(F

k
e )ji − 3

]

−pk
(

detFk
e−1

)

+Ψk
n(n,∇n),

(13)
where μ is the shear modulus, p is a Lagrange multiplier
ensuring incompressibility, and Ψn is the biochemical free
energy depending on the nutrient concentration n. Using
eqs. (9), (13), the Cauchy stress components inside the
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materials read

σk
ij = μkρk(F k

e )il(F
k
e )jl − pkδij , (14)

where ρ is the density, that for both materials is very close
to water density, and summation rule only applies to re-
peated subscripts. Considering that the growth process
happens at long time scales, eq. (4) in quasi-static condi-
tions reduces to ∇ · σk=0, which in spherical coordinates
rewrites

(r2σk
rr),r − r(σk

θθ + σk
φφ) = 0, (15)

where comma denotes partial differentiation. In order to
avoid a singularity in r = 0, we derive from eq. (15) that
the tumour must be subjected to homogeneous deforma-
tion and stress states, such that

(F t
e)ij = δij ; σt

ij = ρt(μt − pt)δij . (16)

Indicating the reference and spatial radii as R and r, re-
spectively, the global incompressibility conditions impose

rt = g · Rt; rh = 3

√

(Rh)3 + (g3 − 1)R3
i . (17)

Substituting eq. (17) in eqs. (14), (15), the radial stress
component σh

rr inside the host tissue reads

σh
rr = −2μhρh

∫ ro

r

(rh/Rh)2 − (Rh/rh)4

rh
drh, (18)

where we used the stress-free boundary condition at the
outer radius, σh

rr(ro) = 0. The continuity of the stress at
the interface between tumour and host tissue also imposes
that σt

rr(ri) = σh
rr(ri). Therefore, using eqs. (16), (18), the

Mandel stress components inside the tumour reads

M t
ij =

μhρh

2

(

4g3 + 1

g4
−

Ro(5R3
o + 4(g3 − 1)R3

i )

(R3
o + (g3 − 1)R3

i )
4/3

)

δij ,

(19)
which represents a spherical homogeneous compression
(respectively, tension) for g > 1 (respectively, g < 1). We
now undertake a field-theoretical viewpoint in order to
couple the transformation of biochemical energy into avas-
cular tumour growth [29]. Let us assume the following ex-
pression for the extra entropy flux Q̄t inside the tumour:

Q̄t = ρt ∂Ψ t

∂(∇n)

ṅ

Θ
. (20)

Substituting eq. (20) in eq. (10), the reduced dissipation
inequality within the tumour mass reads

3M t
rr

ġ

g
− ρt δΨ

t

δn
ṅ ≥ 0, (21)

where δ indicates the functional derivative δnΨ t
n = ∂nΨ t

n−
(∇·∂∇nΨ t

n). In particular, the biochemical free energy Ψ t
n

of the tumour can be expressed as follows:

Ψ t
n(n,∇n,Θ) =

τ

2
(Dn∇n · ∇n + γnn2), (22)

where τ , Dn, γn are positive coefficients which may de-
pend at most on the temperature Θ. The extra-entropy
flux in eq. (20) is therefore directed as the nutrient gradi-
ent, being positive (respectively, negative) if nutrient con-
centration locally increases (respectively, decreases) over
time. From eq. (21), a dissipative evolution equation for
the nutrients reads

ṅ = −
δΨ t

n

δn

/

τ = −γnn + ∇ · (Dn∇n), (23)

which is a classical reaction-diffusion equation, where γn

is the absorption term and Dn the diffusion coefficient in-
side the tumour. Taking into account very small tumours
with characteristic time of nutrient diffusion (few min-
utes) much smaller than the characteristic time of growth
(days), the nutrient density is initially constant every-
where and the early avascular growth is homogeneous. In
such conditions, we can make the assumption that the
biochemical dissipation rate can be transformed into the
creation of tumour mass at a fixed conversion rate ζ, pos-
sibly dependent on n, such that

δΨ

δn
ṅ = τ ṅ2 = ζ

J̇

J
= 3ζ

ġ

g
. (24)

Substituting eqs. (19), (24) into the reduced dissipation in-
equality in eq. (21), we can finally postulate the following
stress-dependent evolution law for the avascular tumour
growth:

ġ

g
=Ktρh

[

ζ+
μh

2

(

4g3 + 1

g4
−

Ro(5R3
o + 4(g3 − 1)R3

i )

(R3
o + (g3 − 1)R3

i )
4/3

)]

,

(25)
where Kt is the tumour growth per free energy unit. Equa-
tion (25) has been numerically integrated using a fourth-
order Runge-Kutta algorithm, and the growth curves are
shown in fig. 2. In particular, the numerical results show
that the elastic constraint of the healthy tissue imposes
a growth rate reduction depending on the aspect ratio
Ro/Ri. Using such a mechano-transduction coupling, we
find that the elastic compression inhibits the growth of
tumour cells even when nutrients are fully available. The
predicted evolution laws are in accordance with the early
growth kinetics observed experimentally for multicellular
spheroids. At later stages of the development, the tumour
core becomes necrotic because the nutrient concentration
decays under a physiological threshold, and only the outer
cells keep proliferating. This phenomenon is out of reach
for a single-phase material model, and requires a more so-
phisticated theoretical framework that will be introduced
in the following section.

3 Mechano-transduction laws in

hetereogeneous tumours with a growing

interface

In this section we will introduce a thermo-mechanical the-
ory for modelling the stress-dependent growth laws in het-
erogeneous materials. First, we make some preliminary
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Fig. 2. Evolution of the growth rate g versus the dimensionless
time t/tc, where tc = 1/(ζρtKt) is a characteristic time. The
solid lines represent the numerical simulations at the labeled
values of aspect ratio Ro/Ri, setting µh = ζKt. The dashed

curve depicts the exponential free growth (µh = 0).

assumptions for coupling volumetric growth with mass
transport phenomena across boundaries and/or material
interfaces. We later define balance laws and thermody-
namic principles driving the evolution of homogeneised
surface fields carried by a non-material interface. Finally,
we apply the proposed theoretical framework to model the
avascular growth of a spheroid tumour with a developed
necrotic core.

3.1 Definition of the heterogeneous tumour model

In living material growth processes can occur at different
length scales, often resulting from a complex local inter-
play between mass transport phenomena and the diffu-
sion properties of biomolecules. This happens, for exam-
ple, during embryogenesis: cells duplicate inside narrow
regions created by the diffusion fronts of morphogenetic
signals, and also rearrange their macroscopic volumes
and material positions in order to reach an homeostatic
state [30]. In order to describe such a complexity in bio-
logical systems, a theoretical framework has been recently
proposed for bridging scales in growth modelling [31]. Let
us consider the avascular growth of a tumour spheroid
which has developed a necrotic core, as depicted in fig. 3.
Because of the low concentration of nutrient factors dif-
fusing inside the tumour, cell proliferation is constrained
at the tumour border. The size of such a viable cell rim
is fixed by the typical diffusion fronts of the nutrients,
and it has been measured in multicellular experiments
at about 50–250μm for tumour spheroids of the size of
mm and for different concentrations of glucose and oxy-
gen [32]. The proliferative rim occupies a much smaller
volume ΔVǫ compared to the necrotic core, so that the
physical fields inside the tumour mass undergo fast but
continuous variation inside ΔVǫ. In order to discard such
a microscopic variability, we can model the proliferative
rim as a moving surface Σ(t) with outer normal nΣ .
This surface behaves as a non-material interface carrying

Fig. 3. Section of a heterogeneous multicellular spheroid with
a necrotic core and an outer rim of proliferative cells (left). The
rim size is fixed by the front width of the diffusive nutrients n,
and growth is modeled as a moving non-material interface Σ
(right).

thermo-mechanical properties, and it is described using a
local parametrization expressing the spatial position vec-
tor as x = x(u1, u2), having tangent bases al = x,ul with
l = (1, 2). The parametric velocity v̄Σ of the surface can
be decomposed as

v̄Σ = v̄Σs + v̄Σn nΣ , (26)

where v̄Σs is assumed to correspond to the projection of
the physical velocity on the surface, whose value depends
on the parametrization. In summary, we define an interfa-
cial growth mechanism by defining homogeneised physical
fields on the moving surface Σ(t), driving the proliferation
characteristics of the tumour cells. In order to fulfill the
conservation of the thermo-mechanical properties of the
biological system, a number of balance principles for the
averaged surface fields are introduced in the following.

3.2 Balance principles for the surface fields

Let us consider our biological system as made by two
different materials occupying growing adjacent regions
V −(t) (i.e. the necrotic core) and V +(t) (i.e. the healthy
stroma), separated by the non-material interface Σ(t) (i.e.
the proliferative tumour cells). In the following the su-
perscripts “−” and “+” will be used for indicating the
physical fields inside the volumes having outer normal
n− = −n+ = nΣ , respectively. The volumetric physi-
cal fields for the necrotic core and the healthy tissue are
subjected to the balance principles discussed in sect. 2.1.
The interfacial growth occurs in a very narrow layer of
thickness ε, defined as

ΔVε =
⋃

(x + νnΣ) ; ∀ x ∈ Σ(t), −ε/2 ≤ ν ≤ ε/2

(27)
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so that we can obtain surface fields on Σ(t) by homoge-
nization of the volume fields, calculating their finite limit
for ε → 0. Indicating with the subscript Σ such sur-
face physical fields, we can therefore introduce a number
of balance principles for the conservation of the thermo-
mechanical properties of the entire system. Dealing with
a moving discontinuity, we define the Thomas derivative

as δt(·)
δtt

= ∂(·)
∂t + v̄ΣnnΣ · ∇(·), and we introduce the jump

operator �·� = (·)+ − (·)−.
For matters of generality, we assume that generic mass

fluxes m− and m+ may exist between the volumes and
the moving interface. Therefore, by applying the transport
and divergence theorems in a system with a non-material
discontinuity, the surface mass balance takes the following
form:

δtρΣ

δtt
+ ∇Σ · (ρΣvΣs) − KρΣ v̄Σn =

ρΣγΣ + �ρ(v̄Σn − vn) + nΣ · m� , (28)

where ∇Σ · is the surface divergence, K is twice the lo-
cal mean curvature, vn is the normal component of the
physical velocity and γΣ is the surface mass source.

Using eq. (28) in the absence of surface external forces,
the balance of linear momentum on the surface reads

ρΣ
δtvΣ

δtt
+ (ρΣvΣs · ∇Σ)vΣ = ∇Σ · σΣ

+ �(v − vΣ) (ρ(v̄Σn − vn) + nΣ · m) + nΣ · σ� , (29)

where σΣ is the Cauchy stress tensor acting on the sur-
face. It is useful to remark that eq. (29) represents the
generalization of the Young-Laplace law for a growing non-
material interface.

The balance of angular momentum on the surface can
be written as

al · σΣ × al = 0, l = (1, 2), (30)

where × is the cross-product and al indicate the recipro-
cal tangent bases. In practice, eq. (30) imposes that σΣ is
a tangential field on Σ(t) with symmetric surface compo-
nents.

Defining the internal energy eΣ for unit mass on the
surface, after some manipulations involving eqs. (28), (29)
the following conservation law can be derived:

ρΣ ǫ̇Σ = al · σΣ · vΣ,l −∇Σ · QΣ + rΣ

+

�
nΣ · σ · (v − vΣ) +

(

(v − vΣ)2

2
+ ǫ − ǫΣ

)

× (ρ(v̄Σn − vn) + nΣ · m) − nΣ · Q

�
. (31)

Using the Gauss-Weingarten formulas with eq. (30), we
can prove the useful identity

al · σΣ · vΣ,l = σlm
Σ ((vΣs)l;m − vΣnKlm), (32)

where ; indicates the covariant derivative on Σ(t), and
Klm = −al,m · nΣ are the components of the second fun-
damental form of the surface, with l,m = (1, 2).

The Clausius-Duhem form of the second law of ther-
modynamics for the surface reads

ρΣ η̇Σ ≥
rΣ

Θ
−∇ ·

(

QΣ

Θ

)

−
�
nΣ · (Q/Θ + Q̄)

− (η − ηΣ) (ρ(v̄Σn − vn) + nΣ · m)
�
. (33)

Putting together eqs. (31), (33) and defining a surface free
energy ΨΣ per unit mass, the dissipation inequality on the
surface can be written as

ρΣΨ̇Σ ≤ al · σΣ · vΣ,l

+

�
nΣ · σ · (v − vΣ) − ΘnΣ · Q̄

+

(

(v − vΣ)2

2
+ Ψ − ΨΣ

)

(ρ(v̄Σn − vn) + nΣ · m)

�
,

(34)

where we assumed isothermal, uniform conditions for mat-
ters of notation compactness. In the following, we use
the dissipation inequality in eq. (34) for modelling the
mechano-biology of a heterogeneous tumour, defining con-
stitutive equations and growth evolution laws for the pro-
liferative cell rim.

3.3 Application to stress inhibition of a growing
tumour rim

Let us first introduce a parametric representation of our
proliferative tumour surface Σ(t) depicted in fig. 3, using
the spherical coordinates (θ, φ). The surface position in
the reference configuration reads XΣ0

, which later moves
to the grown spatial position xΣ . According to this para-
metric representation, the base vectors al (al0) span the
tangent plane of the surface in the actual (reference) con-
figuration, being defined as follows:

aθ = ri sin φ eθ; aφ = ri eφ, (35)

where ej(j = r, θ, φ) are the unit vectors of the spheri-
cal framework, so that the surface normal reads nΣ = er.
Therefore, non-zero metric coefficients in the actual con-
figurations read gθθ = r2

i and gφφ = r2
i sin2 φ. Considering

an axisymmetric deformation, the following useful rela-
tions can be derived:

gαβ = (ri/Ri)
2
Gαβ ; Kαβ = r−1

i gαβ , (36)

where Gαβ(α, β = θ, φ) are the reference metric coeffi-
cients. Assuming that the tumour proliferation occurs at
a constant reference density ρΣg = JΣρΣ , the free energy
per unit mass of the growing rim can be postulated as

ΨΣ0
= ̟

√

(det gαβ)/(det Gαβ) = ̟ JΣ , (37)

JΣ being the surface Jacobian of the growing surface, so
that ̟ acts like a surface tension coefficient. Recalling the
following useful relation

ġαβ = 2aα · (v̄Σ),β = 2((v̄Σs)α;β − v̄ΣnKαβ) (38)
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and substituting it into eq. (34), the following constitutive
equation can be postulated:

σαβ
Σ = 2ρΣ

∂ΨΣ

∂gαβ
= ρΣg̟ gαβ . (39)

From eqs. (32), (39), the reduced dissipation equation for
the tumour cell rim rewrites

� (

(v − vΣ)2

2
+ Ψ − ΨΣ

)

(ρ(v̄Σn − vn) + nΣ · m)

+nΣ · [σ · (v − vΣ) − ΘQ̄]

�

+σαβ
Σ Kαβ(v̄Σn − vΣn) ≥ 0. (40)

Let us now assume that the proliferative tumour cells
have no mass exchanges with the outer healthy tissue
(i.e. m+ = 0), choosing a parametrization such that
v+

n = v̄Σn = v̄Σn at any time t. Nevertheless, the rim
cells can undergo apoptosis over time so that the necrotic
core is constantly growing thanks to a mass flux m− at
the interface Σ(t). In particular, we can make the follow-
ing constitutive assumption:

m− = ρ−(v−

r − v̄Σr)er = −ρ−v̄Σrer (41)

describing a mass deposition of necrotic cells, having the
volumetric density ρ−. From eqs. (28), (41), the mass bal-
ance inside the proliferative rim rewrites

δtρΣ

δtt
+ 2

ρΣ v̄Σn

rΣ
= ρΣγΣ , (42)

with γΣ being the tumour mass source on the surface.
Substituting eqs. (39), (41) into eq. (29), the linear

momentum balance for the cell rim reads

∇Σ ·σΣ +�nΣ ·σ� =

(

−2
ρΣg̟

ri
+ σ+

rr|ri
− σ−

rr|ri

)

er = 0,

(43)
where we assumed that surface growth occurs in quasi-
static conditions. Taking into account the constitutive re-
lations in eqs. (14), (17), (18), the stress component σ+

rr|ri

in the outer tissue at the surface reads

σ+
rr|ri

=
μhρh

2

(

Ri(4r3
i + R3

i )

r4
i

−
Ro(5R3

o + 4(r3
i − R3

i )

(r3
i + R3

o − R3
i )

4/3

)

.

(44)
Using the same field-theoretical approach as in sect. 2.3,
we can assume a positive-definite energy dissipation gen-
erated by the extra-entropy flux, defined as

er · �−ΘQ̄� = κΣ
J̇Σ

JΣ
= 2κΣ

v̄Σn

ri
, (45)

so that κΣ represents the rate of free energy converted
into newborn tumour cells. Taking into account eqs. (39),
(41), (43), (45) within the reduced dissipation inequal-
ity in eq. (40), we can finally define the following stress-
dependent evolution law for the growing tumour rim:

Fig. 4. Evolution of the grown rim radius ri versus the di-
mensionless time t/tc. The solid lines represent the numerical
simulations at the labeled values of aspect ratio Ro/Ri (top,
at Lc/Ri = 0.1) and of the capillary ratio Lc/Ri (bottom, at
Ro/Ri = 2), setting ρhµh = κΣ . The dashed curve depicts free
growth conditions (µh = 0).

v̄Σn = ṙi = KΣ

(

2
κΣ − ρΣg̟

ri
+ σ+

rr|ri

)

, (46)

where KΣ is the rim growth rate per unit free energy.
Defining a characteristic time tc = Ri/(κΣKΣ), using
a tilde upperscore for indicating dimensionless variables
eq. (46) rewrites

˙̃ri =
ṙi

Ri
=

1 − (Lcapρhμh)/(RiκΣ)

r̃i/2
+ σ̃+

rr, (47)

where Lcap = (ρΣg̟)/(ρhμh) is a capillary length and

σ̃+
rr = σ+

rr/κΣ . The numerical results of this stress-depend-
ent growth law are depicted in fig. 4 for varying values of
the dimensionless parameters Lcap/Ri and Ro/Ri. It is
useful to remark that the analytical solution of eq. (47)
in the case of free boundary (i.e. setting μh = 0) is a
capillarity-driven law r̃i ∝ t̃1/2, representing the diffusive
behaviour of freely expanding cell colonies [22]. The stress-
dependent growth laws are finally in accordance with ex-
perimental results for heterogeneous tumour spheroids.
Notably, the numerical curves show that a cross-over effect
exists from the diffusive expansion to a stress-saturated
growth of the proliferative rim.
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4 Discussion and conclusion

In this work, we have investigated the thermo-mechanical
bases for coupling volumetric growth and solid stress
in tumour growth modelling. Two continuous theoreti-
cal approaches have been introduced in order to take
into account different mechanisms underlying the avas-
cular growth phase of tumour spheroids. In sect. 2, the
tumour mass was modeled as a single-phase continuum
whose volumetric growth is regulated by the local con-
centration of internal variables, representing the diffusive
nutrients. After introducing the general balance principles
for growing continuous bodies, we have used the Clausius-
Duhem form of the entropy inequality to demonstrate in
eq. (10) that the Mandel tensor is the stress measure driv-
ing the evolution of material growth. Accordingly, we have
proposed in eq. (25) a dissipative evolution law for the
tumour spheroid, where homogeneous growth is coupled
with both the solid stress exerted by the outer healthy
stroma and the biochemical energy provided by the nu-
trient absorbtion. The results depicted in fig. 2 show an
exponential expansion in the earliest growth phase, fol-
lowed by a progressive reduction of the growth rate, which
is modulated by the compressive stress inside the tumour
mass. Such early growth characteristics are in agreement
with classical experimental results on multicellular tu-
mour spheroids. In fact, Freyer and Sutherland have found
that tumour spheroids grow exponentially up to a diam-
eter of 150μm with a doubling time of about 17 h, while
further growth rate decreased because of a decreased rate
of oxygen and glucose consumption [32, 33]. In practice,
the external load drives a progressive accumulation of tu-
mour cells in a quiescent state, which can turn proliferative
again if the stress is released, as later observed by Helm-
linger et al. [13]. Further growth results in the formation
of a necrotic core for a spheroid diameter of about 400μm,
due to a reduced penetration length of the nutrients, also
caused by a significant increase in the hydrostatic pressure
inside the tumour. When the spheroids reach a diameter
of about 1000μm the extent of the necrosis becomes dom-
inant, and proliferation occurs in a narrow outer rim of
proliferative cells. Such a heterogeneous tumour is out of
reach for a single-phase model, therefore it has been inves-
tigated using the multi-scale continuous approach defined
in sect. 3. Considering that the tumour growth undergoes
fast but continuous variations in a very narrow volume, as
shown in fig. 3, we have modelled this surface growth in-
side the outer rim as a moving non-material interface car-
rying thermo-mechanical properties. Under this assump-
tion, we have defined a homogeneised surface field on the
interface, deriving the required balance principles for the
conservation of the thermo-mechanical properties of the
entire system. In particular, using the previous thermo-
dynamic approach we have demonstrated in eq. (34) that
the surface growth is driven by a jump of the volumet-
ric mechanical energy fluxes across the interface. Assum-
ing that the proliferative cells adhere via a surface ten-
sion mechanism in eq. (39), and accounting for a mass
flux of dead cells towards the necrotic core in eq. (41),
we have derived a stress-dependent surface growth law in

eq. (46). The results of this model are shown in fig. 4, for
varying geometric and elastic parameters. In particular,
we qualitatively recover the typical experimental curves
with a cross-over towards a growth saturation regime once
reached a limiting solid stress. Such a saturation compres-
sive stress has been measured in multicellular spheroids at
about 6–16 kPa in agarose gel experiments [13]. Applying
a constant osmotic pressure at around 10 kPa, the dupli-
cation rate of bulk cells decreased by a factor 300 [34].
A compressive stress has been also reported to induce
tumour cell apoptotis via a mitochondrial pathway [35],
therefore playing a key role in determining the homeo-
static conditions during avascular tumour invasion.

In conclusion, we have proposed two different theoret-
ical frameworks which successfully modelled the coupled
effects of diffusing biomolecules and solid stress inhibi-
tion on the avascular growth of tumour spheroid. Using a
multi-scale approach and a continuous thermo-dynamical
treatment of the growth evolution laws, this work has the
potential to provide new insights on the role of micro-
environment during tumour invasion. Understanding how
the biochemical and the biomechanical forces interact with
tumour cells and intervene during intercellular crosstalk is
a major challenge for designing patient-specific therapeu-
tic actions for treating cancer.

Partial funding by the European Community grant ERG-
256605, FP7 program, is gratefully acknowledged.
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